Generalized Radon Transform and Lévy’s Brownian Motion, II

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Endpoint Bounds for a Generalized Radon Transform

We prove that convolution with arclength measure on the curve parametrized by h(t) := (t, t, . . . , t) is a bounded operator from L(R) to L(R) for the full conjectured range of exponents, improving on a result due to M. Christ. We also obtain nearly sharp Lorentz space bounds.

متن کامل

Generalized multi-directional discrete Radon transform

This paper presents a discrete generalized multi-directional Radon transform (GMDRT) and its exact inversion algorithm. GMDRT is an extension of the classical Radon transform. It aims to project parameterized curves and geometric objects following several directions. For this purpose, we propose an algebraic formalism of the Radon Transform presenting the forward transform as a matrix-vector_ m...

متن کامل

Brownian Motion and the Generalized Catalan Numbers

We show that the generating functions of the generalized Catalan numbers can be identified with the moment generating functions of probability density functions related to the Brownian motion stochastic process. Specifically, the probability density functions are exponential mixtures of inverse Gaussian (EMIG) probability density functions, which arise as the first passage time distributions to...

متن کامل

Representation of Radon shape diffusions via hyperspherical Brownian motion

A framework is introduced for the study of general Radon shape diffusions, that is, shape diffusions induced by projections of randomly rotating shapes. This is done via a convenient representation of unoriented Radon shape diffusions in (unoriented) D.G. Kendall shape space ̃k n through a Brownian motion on the hypersphere. This representation leads to a coordinate system for the generalized v...

متن کامل

Origin of hyperdiffusion in generalized Brownian motion.

We study a minimal non-Markovian model of superdiffusion which originates from long-range velocity correlations within the generalized Langevin equation approach. The model allows for a three-dimensional Markovian embedding. The emergence of a transient hyperdiffusion, (Δx2(t))∝t(2+λ), with λ∼1-3 is detected in tilted washboard potentials before it ends up in a ballistic asymptotic regime. We r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Nagoya Mathematical Journal

سال: 1987

ISSN: 0027-7630,2152-6842

DOI: 10.1017/s0027763000000763